Advanced Tetracycles in a Stereoselective Approach to d,I-Spongiatriol and Related Metabolites: The Use of Radicals in the Synthesis of Angular Electrophores

Phillip A. Zoretic,* Yongzheng Zhang, and Haiquan Fang
Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
Anthony A. Ribeiro ${ }^{\dagger}$ and George Dubay ${ }^{\S}$
Duke NMR Spectroscopy Center, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, and Department of Chemistry, Duke University, P. M. Gross Chemical Laboratories, Durham, North Carolina 27708

Received September 3, 1997

Abstract

A stereoselective radical cascade cyclization of polyene 6 , containing an α, β-unsaturated cyano group, was employed to control six contiguous chiral centers and to introduce a C-8 angular CN group in tricycle 7. The cyano group was ultimately utilized as an entry to a C-8 angular hydroxymethyl group. Compound $\mathbf{7}$ was converted into two key tetracycles $\mathbf{2 2}$ and $\mathbf{2 5}$, respectively, each possessing an intact D-furan ring system and containing the necessary functionality for further chemical elaboration to the highly oxygenated spongians 1-5.

I ntroduction

The highly oxygenated tetracyclic diterpenes spongiatriol (1) ${ }^{1,2}$ and epispongiatriol (2) were isolated from a Spongia species off the Great Barrier Reef in the Australian waters. The diosphenol $3,{ }^{3}$ a sponge metabolite, was isolated from the nudibranch Casella atromarginata, at Trincomallee, Sri Lanka. The source of the diterpenes from the nudibranch is presumed to be obtained indirectly from a sponge in the mollusk's diet. Two additional spongian metabolites (4 and 5) possessing an A-ring lactone system have also been isolated from a Spongia species from the Great Barrier Reef. ${ }^{2}$ The latter metabolite (5) was shown to possess moderate cytotoxicity to P338 murine leukemia cells.

1: $R_{1}=H, R_{2}=O H$
2: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$

4

3

Recently we ${ }^{4}$ reported the synthesis of d,I-isospongiadiol using in part an intramolecular oxidative free-radical
† Duke University Medical Center.
\# P.M. Gross Chemical Laboratories.
(1) Kazlauskas, R.; Murphy, P. T.; Wells, R. J .; Noack, K.; Oberhansli, W. E.; Schonholzer, P. Aust. J. Chem. 1979, 32, 867.
(2) Gunasekera, S. P.; Schmitz, F. J . J . Org. Chem. 1991, 56, 1250.
(3) Sheuer, P. J.; de Silva, E. D. Heterocydics 1982, 17, 167.
(4) Zoretic, P. A.; Wang, M.; Zhang, Y.; Shen, Z.; Riberio, A. A. J .
cyclization to introduce stereoselectively five of the six stereogenic centers present in the spongian. ${ }^{5}$ We have al so shown that an angular electrophore ${ }^{6}$ can readily be introduced in polycycles via a radical cascade cyclization of a polyene containing an α, β-unsaturated cyano moiety and have extended this type of methodology in the synthesis of a D-homosteroid. ${ }^{7}$ The combination of these two strategies (Scheme 1) should provide a stereoselective entry to spongiatriols 1-5 via the common intermediate 8. Here, intramolecular oxidative radical cyclization of 6 can be effectively utilized to (1) control the desired 6 -endo-trig mode in the second radical cyclization step; (2) stereoselectively introduce, in one step, six key chiral centers at $\mathrm{C}-4,5,8,9,10$, and 14 in tricycle 7; (3) provide an angular 8β-cyano group for further elaboration to a hydroxymethyl group; (4) introduce appropriate functionality in the A-ring system; and (5) provide a functional group in the termination step that can be used in the construction of the D-furan ring system. We describe here the application of this type of radical methodology in the synthesis of two advanced tetracycle intermediates that could ultimately be utilized in the total synthesis of the targeted spongians.

Results and Discussion

The synthesis of polyene 6 was achieved by using a similar protocol previously developed by $u s^{6}$ as detailed in Scheme 2. Horner-Emmons reaction ${ }^{8}$ of the potassium salt of cyano phosphonate 9^{6} with aldehyde 10 (eq 1) gave an 81:19 mixture of $\mathbf{1 1}$ and the corresponding

[^0]
Scheme 1

Scheme $\mathbf{2 a}^{\text {a }}$

$R=$ TBDPS

a Key: (a) $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$, toluene, $-78{ }^{\circ} \mathrm{C}$; (b) $\mathbf{1 0},-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, overnight; (c) $\mathrm{MeOH}, \mathrm{p}$-TsOH•py; (d) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) $\mathrm{LiCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMe}(\mathrm{Na}) \mathrm{CO}_{2} \mathrm{Et}, 0^{\circ} \mathrm{C}$, THF ; then aqueous HCl .
$2 \mathrm{E}, 6 \mathrm{E}$-isomer. The desired $2 \mathrm{E}, 6 \mathrm{Z}$-nitrile $\mathbf{1 1}$ was chro-

matographically separated from the isomer to afford pure $\mathbf{1 1}$ in 78% yield. Conversion of $\mathbf{1 1}$ to polyene 6 (44% overall yield) in three steps was realized by (1) cleavage of the THP protecting group in $\mathbf{1 1}$ to give alcohol 12; (2) conversion of al cohol $\mathbf{1 2}$ to the corresponding bromide 13; and (3) alkylation of $\mathbf{1 3}$ (inverse addition) with the dianion ${ }^{9}$ of ethyl 2-methylacetoacetate.
Intramolecular oxidative freeradical cydization of 6 (Scheme 3) with a 2:1 ratio of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in tandem with $\mathrm{Cu}(\mathrm{OAC})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{10,11}$ in a 0.1 M solution of deaerated HOAC afforded an 81:19 ratio of 16a and 16b in 58\% yield, after chromatography. Since it was determined that the exo and endo products could be separated more easily at the alcohol stage, the mixture of $\mathbf{1 6}$ was directly

[^1]

[^2]desilylated with $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NF}^{12}$ to give $\mathbf{7 a}$ and $\mathbf{7 b}$ in 88% yield. Subsequent chromatography on silica gel afforded pure $7 \mathbf{7 a}(70 \%)$.

A series of 2D COSY, HMQC, HMBC, and 1D APT NMR studies was used to determine the assignment of each proton and carbon resonance signal in 7a. Using these assignments, NOE difference spectra (NOE DS) of 7a were used to confirm the stereochemistry derived from the cyclization process. Irradiation of the $\mathrm{C}-10 \mathrm{Me}(\delta$ 1.21) showed enhancements of the ester methylene protons ($\delta 4.15$), C-2 axial proton ($\delta 2.99$), C-6 axial proton ($\delta 2.26$), C-1 equatorial proton ($\delta 2.13$), and the C-11 axial proton ($\delta 1.63$). Likewise irradiation of the C-9 axial proton ($\delta 1.24$) gave a strong enhancement of the C-14 axial proton ($\delta 2.16$), the C-5 axial proton (δ 1.34), and the C-1 axial proton ($\delta 1.33$) and a weaker enhancement to the C-12 axial proton ($\delta 2.04$), the C-7 axial proton ($\delta 1.46$), and the C-11 equatorial proton (δ 1.94). Irradiation of both of the C-1 axial ($\delta 1.33$) and the C-5 axial ($\delta 1.34$) protons showed enhancements to the C-9 axial proton ($\delta 1.24$), C-2 equatorial proton (δ 2.43), C-1 equatorial proton ($\delta 2.13$), C-6 equatorial proton ($\delta 2.01$), and the C-7 axial proton ($\delta 1.46$), thus confirming the all-trans stereochemistry and the C-4 β-disposition of the carbethoxy group as shown in 7a. It

[^3]Scheme $4^{\text {a }}$

a Key: (a) 6.0 equiv of DIBALH, toluene, $-78^{\circ} \mathrm{C}$; (b) $6 \% \mathrm{HOAC}$, saturated with $\mathrm{NaOAc},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$; (c) $\mathrm{LAH}, \mathrm{THF}, \Delta$; (d) 4.4 equiv of TBDMSCI, 4-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (e) $\mathrm{CrO}_{3} \cdot 2 p y, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.
is also noted that the large deshielding effect of the C-10 Me ($\delta 1.21$) in 7a is comparable to the chemical shift (δ 1.28) observed for an analogue ${ }^{6}$ possessing an angular C-8 CN group which is consistent with the C-10 Me in 7a being 1,3-diaxially disposed to the nitrile and in its deshielding cone. The stereospecificity derived in tetracycles $\mathbf{1 6}$ from cyclization of polyene $\mathbf{6}$ is presumably due to a stepwise process opposed to a concerted one in which the most stable ring system is formed at each cyclization stage in the radical cascade sequence.

The construction of the intact spongian skeleton 8 was realized from 7a in three steps in 55% overall yield. Reaction of 7a with m-CPBA gave epoxide 17. The epoxide stereochemistry in $\mathbf{1 7}$ is tentatively assigned in anal ogy with that observed in a similar case. ${ }^{4}$ It is also noted here that the C-13 center will ultimately be destroyed during the formation of the D-furan ring system. Thus, Collins oxidation of $\mathbf{1 7}$ followed by treatment of the resulting aldehyde $\mathbf{1 8}$ with $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in DMSO gave tetracycle 8.

With the spongian skeleton secured, our next objective was to introduce the desired hydroxymethyl group at C-8 and then to modify the A-ring system in an attempt to obtain two different intermediates that could be used in separate approaches to the afore-mentioned spongians. Toward these ends compounds 22 and $\mathbf{2 5}$ derivable from 8 were targeted. Reaction of 8 (Scheme 4) with 6.0 equiv of DIBALH in toluene at $-78{ }^{\circ} \mathrm{C}$ and subsequent hydrolysis of the resulting imine with 6\% HOAc saturated with NaOAc gave ester 19 in 73\% yield, after chromatography. Presumably in the reduction of 8 the keto group is preferentially reduced to form an intermediate in which the generated $\mathrm{C}-3 \beta$-diisobutylaluminum alkoxide group can chelate with the carbonyl of the ester, thus blocking complexation with a DIBALH molecule. Hydride reduction of 19 with LAH afforded triol $\mathbf{2 0}$ (96\%). Preferential protection of the primary alcohols in the presence of the secondary al cohol was effected by reaction of $\mathbf{2 0}$ with $\mathrm{TBDMSCI}^{12}$ in the presence of 4-DMAP ${ }^{13}$ and

Scheme 5 ${ }^{\text {a }}$

a Key: (a) $\mathrm{NaBH}_{4}, \mathrm{EtOH}$; (b) $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Cl}, 4$-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (c) 4-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta$; (d) 3.3 equiv of DIBALH, $-78^{\circ} \mathrm{C}$, toluene, then 6% HOAc saturated with $\mathrm{NaOAC},-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$.
triethylamine to give $\mathbf{2 1}$ (72\%). Subsequent oxidation of 21 with Collins reagent yielded the targeted ketone 22 (67\%).

A second intermediate 25 (Scheme 5) was al so targeted, since it was anticipated that such a derivative should be suitable for further elaboration to metabolite 4. The introduction of the $\Delta^{2,3}$-double bond in $\mathbf{2 5}$ was acheived in the following manner. Hydride reduction of 8 gave alcohol $\mathbf{2 3}$ (88\%). Treatment of $\mathbf{2 3}$ with POCl_{3} in refuxing pyridine afforded 24 in only 40% yield. However it was found that a two-step process produced 24 in excellent yield. Thus, reaction of alcohol $\mathbf{2 3}$ with trifluoromethanesulfonyl chloride at $0^{\circ} \mathrm{C}$ in the presence of 4-DMAP gave a mixture of the corresponding sulfonated ester (major product) and a trace of 24. Heating this mixture with 4-DMAP in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded $\mathbf{2 4}$ (94%, two steps).

The introduction of the desired C-4 β-hydroxymethyl group present in $\mathbf{2 5}$ appeared at first to be somewhat difficult. It is known that LiBH_{4} in THF can selectively reduce an ester in the presence of a nitrile. Attempted LiBH_{4} reduction of $\mathbf{2 4}$ in our case gave only partial reduction of the ester group. However, it was encouraging to find that reduction of $\mathbf{2 4}$ with 3.3 equiv of DIBALH at $-78{ }^{\circ} \mathrm{C}$ in toluene followed by hydrolysis of the intermediate imine with 6\% H OAc saturated with NaOAc gave the targeted hydroxy aldehyde $\mathbf{2 5}$ directly in 74\% yield. The stereochemistry shown in $\mathbf{2 5}$ was proven to be correct on the basis of the following NOE study. I rradition of the $20-\mathrm{Me}(\delta 0.88$) in $\mathbf{2 5}$ gave enhancements of the aldehydic proton ($\delta 9.86$), the vinyl proton ($\delta 5.63$), one of the hydroxymethyl protons ($\delta 3.36$), the C-1 equatorial proton ($\delta 2.15$), and the C-11 axial proton (δ 2.07). Indirectly this NOE study also confirms the assigned stereochemistry in tricycle 7a vide supra.

Conclusion

In conclusion, a highly stereoselective radical cascade cyclization strategy was developed as a facile entry to various oxygenated spongiatriols. A key factor being the introduction of a latent angular electrophore at the cyclization stage which ultimately served as an entry to the desired angular hydroxymethyl group. In addition, the synthetic intermediates 22 and $\mathbf{2 5}$ can serve as key compounds en route to spongians 1-5.

[^4]
Experimental Section

General Procedures. NMR spectra were obtained at 200, 300,500 , and 600 MHz . C and H microanalyses were obtained from Gal braith Laboratories. HRMS analyses were obtained from the Mass Spectroscopy Facility at Duke. All melting points are uncorrected. Preparative chromatography was preformed on Merck silica gel G 60 (70-230 mesh) and Merck silica gel G (230-400 mesh, for pressure chromatography). TLC was performed with Sybron/Brinkmann silica gel G/UV 254 plates, 0.25 mm (analytical). Compounds on chromatography plates were visualized by spraying with 4\% phosphomolybdic acid in isopropyl alcohol followed by heating. THF was distilled from sodium benzophenone ketyl. Commercial reagent grade solvents and chemicals were used as obtained unless otherwise noted.
(2E,6Z,10E)-12-[(tert-Butyldiphenylsilyl)oxy]-6-cyano-2,10-dimethyl-1-[(tetrahydro-2H-pyran-2-yl)oxy]-2,6,10dodecatriene (11). $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(0.5 \mathrm{M}$ in toluene, 31.8 mL , $15.9 \mathrm{mmol})$ was added dropwise to phosphonate $9(5.95 \mathrm{~g}, 16.6$ $\mathrm{mmol})$ in dry toluene (60 mL) at $-78^{\circ} \mathrm{C}$ over 30 min under N_{2}. Stirring was continued for 1 h , aldehyde $\mathbf{1 0}(5.06 \mathrm{~g}, 13.8$ mmol) in toluene (50 mL) was added over 1 h , stirring was continued for 4 h at $-78{ }^{\circ} \mathrm{C}$, and then the reaction mixture was gradually warmed to rt and stirred overnight. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to afford an oil. Chromatography on silica gel (70-230 mesh, 80 g) and elution with 2% and 5% EtOAc-hexanes gave 6.2 g (78\%) of 11 and 450 mg of a mixture of 11 and the $2 \mathrm{E}, 6 \mathrm{E}$-isomer. For 11: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$ $\delta 7.63-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 6 \mathrm{H}), 6.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5$ $\mathrm{Hz}), 5.32-5.45(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}), 4.22(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=6.2 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz}), 3.84(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz})$ and $3.80-3.94(\mathrm{~m})[2 \mathrm{H}], 3.45-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.20-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}), 1.46(\mathrm{~s})$ and $1.41-$ $1.90(\mathrm{~m})[12 \mathrm{H}], 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 77.0\right) \delta 147.3$, 135.5, 135.1, 133.9, 129.5, 127.6, 125.4, 124.8, 117.5, 114.3, 97.5, 72.4, 62.1, 60.9, 38.1, 34.0, 30.6, 29.5, 26.8, 26.3, 25.4, 19.4, 19.1, 16.1, 14.1; IR (neat) $2212 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{NSi}: \mathrm{C}, 75.61 ; \mathrm{H}, 8.64 ; \mathrm{N}, 2.45$. Found: C, 75.74; H, 8.69; N, 2.53.
(2E,6Z,10E)-12-[(tert-Butyldiphenylsilyl)oxy]-6-cyano-2,10-dimethyl-2,6,10-dodecatrien-1-ol (12). A solution of nitrile 11 ($1.00 \mathrm{~g}, 1.75 \mathrm{mmol}$) and p-TsOH \cdot py ($48 \mathrm{mg}, 0.193$ mmol) in $\mathrm{MeOH}(10 \mathrm{~mL}$) was stirred for 10 h at rt . The solvent was removed in vacuo and the residue diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with saturated NaHCO_{3}, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to afford an oil. Chromatography on silica gel (230-400 mesh, 20 g) and elution with $20 \% \mathrm{EtOAc}$-hexanes gave $0.70 \mathrm{~g}(82 \%)$ of 12: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.65-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 6 \mathrm{H}), 6.11$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.32-5.44(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2$ $\mathrm{Hz}), 3.99$ (br s, 2H), $2.45(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~m}$, $2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.46\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3}\right.$ and OH$), 1.04(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 147.4,136.5,135.5,135.0,133.7$, $129.5,127.5,125.3,122.8,117.6,114.2,68.3,60.9,38.0,33.9$, 29.4, 26.7, 26.3, 19.0, 16.0, 13.7; IR (neat) 3447, $2215 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 76.34 ; \mathrm{H}, 8.47 ; \mathrm{N}, 2.87$. Found: C, 75.99; H, 8.26; N, 3.26.
(2E,6Z,10E)-1-Bromo-12-[(tert-ButyIdiphenyIsilyl)oxy]6 -cyano-2,10-dimethyl-2,6,10-dodecatriene (13). Carbon tetrabromide ($2.85 \mathrm{~g}, 8.58 \mathrm{mmol}$) was added in several portions to alcohol $12(2.79 \mathrm{~g}, 5.73 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(1.95 \mathrm{~g}, 7.44 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at rt , and the reaction mixture was stirred for 1.5 h . The solvent was removed in vacuo. Hexanes (100 mL) was added to the residue, and the triphenylphosphine oxide was removed by filtration. Concentration of the filtrate and subsequent chromatography on silica gel (70-230 mesh, 20 g) eluting with 2% EtOAc-hexanes gave 2.95 g (94\%) of 13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.46(\mathrm{~m}, 6 \mathrm{H})$, $6.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.35-5.57(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $6.2 \mathrm{~Hz}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.10$ $(\mathrm{m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 147.8,135.5,135.0,134.0,133.8,129.5,128.4$,
127.6, 125.4, 117.4, 113.8, 60.9, 40.9, 38.0, 33.6, 29.5, 26.8, 19.1, 16.1, 14.8; IR (neat) $2217 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{40^{-}}$ BrNOSi: C, 67.62; H, 7.32; N, 2.54. Found: C, 67.22; H, 7.17; N, 2.34.
(E)-1-[(tert-Butyldiphenylsilyl)oxy]-3,7-dimethyl-6,7-oxido-2-octene (15). Imidazole ($7.89 \mathrm{~g}, 116.0 \mathrm{mmol}$), TBDPSCI ($15.4 \mathrm{~mL}, 58.0 \mathrm{mmol}$), and $14(7.59 \mathrm{~g}, 44.6 \mathrm{mmol})$ in DMF $(40 \mathrm{~mL})$ were stirred at rt for 2.5 h . The solvent was removed in vacuo ($50^{\circ} \mathrm{C}, 0.5 \mathrm{~mm}$), and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to afford an oil. Chromatography on silica gel (70-230 mesh, 100 g) eluting with 2% EtOAc-hexanes gave 17.9 g (98\%) of 15: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 6 \mathrm{H}), 5.39-5.50$ $(\mathrm{m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}), 2.70(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz})$, 2.02-2.19 (m, 2H), 1.47-1.61 (m, 2H), 1.46 (s, 3H), $1.30(\mathrm{~s}$, 3H), $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) $\delta 136.0$, 135.5, 133.9, 129.5, 127.5, 124.5, 64.0, 61.0, 58.3, 36.0, 27.1, 26.8, $24.8,19.1,18.7,16.3$. Theepoxide was not characterized further but submitted to oxidation.
(E)-6-[(tert-B utyldiphenylsilyl)oxy]-4-methyl-4-hexenal (10). $\mathrm{HIO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10.4 \mathrm{~g}, 45.7 \mathrm{mmol})$ in THF (100 mL) was added to a solution of $\mathbf{1 5}\left(17.0 \mathrm{~g}, 41.6 \mathrm{mmol}^{2}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$ (200 mL) at $0^{\circ} \mathrm{C}$ over 1 h , and stirring was continued for an additional 1 h at $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$, saturated $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give an oil. Chromatography on silica gel (70-230 mesh) eluting with 2% EtOAc-hexanes gave $11.1 \mathrm{~g}(73 \%)$ of $\mathbf{1 0}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $9.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}), 7.63-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 6 \mathrm{H})$, $5.34-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.21$ (dd, 2H, J $=0.8,6.2 \mathrm{~Hz}$), $2.44-2.56$ $(\mathrm{m}, 2 \mathrm{H}), 2.22-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 202.2,135.5,134.9,134.7,133.8,129.5,127.63$, 127.56, 124.9, 60.9, 41.8, 31.4, 26.8, 26.5, 19.1, 16.4. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$: C, $75.36 ; \mathrm{H}, 8.25$. Found: C, $75.25 ; \mathrm{H}$, 8.36 .

Ethyl (6E,10Z,14E)-16-[(tert-Butyldiphenylsilyl)oxy]-10-cyano-2,6,14-trimethyl-3-oxo-6,10,14-hexadecatrienoate (6). Ethyl 2-methylacetoacetate ($98 \%, 0.946 \mathrm{~g}, 6.44$ mmol) was added via a syringe to a suspension of NaH (60% in mineral oil, $257 \mathrm{mg}, 6.44 \mathrm{mmol}$) and HMPA (1 mL) in dry THF (20 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2} over 15 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . n-BuLi (2.5 M in hexanes, $2.57 \mathrm{~mL}, 6.44 \mathrm{mmol}$) was added via a syringe over 15 min , and stirring was continued for 30 min . The generated dianion of ethyl 2-methylacetoacetate was added to bromide $13(2.95 \mathrm{~g}, 5.36 \mathrm{mmol})$ in dry THF (10 mL) at $0{ }^{\circ} \mathrm{C}$ over 45 min . The reaction mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, quenched with $10 \% \mathrm{HCl}(\mathrm{pH}=7)$, and then diluted with CH_{2} $\mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give an oil. Chromatography on silica gel (230-400 mesh, 20 g) and elution with 5% EtOAc-hexanes gave $2.18 \mathrm{~g}(66 \%)$ of 6 : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 6 \mathrm{H}), 6.09$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 5.33-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.13(\mathrm{~m}, 1 \mathrm{H})$, 4.12-4.28 (m, 4H), $3.51(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.57-2.71(\mathrm{~m}$, $2 \mathrm{H}), 2.36-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.32(\mathrm{~m}, 8 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.46$ $(\mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz})$ and $1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})[6 \mathrm{H}], 1.04$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 205.4,170.5,147.3,135.5$, 135.4, 135.1, 133.9, 129.5, 127.6, 125.4, 122.7, 117.6, 114.4, $61.3,60.9,52.9,39.9,38.1,34.2,33.1,29.5,26.8,26.7,19.1$, 16.1, 14.1, 12.8; IR (neat) 2214, 1743, $1716 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}, 74.35 ; \mathrm{H}, 8.37$; $\mathrm{N}, 2.28$. Found: $\mathrm{C}, 74.19$; H, 8.32; N, 2.59.
d,I-(1 $\alpha, 4 \mathrm{a} \alpha, 4 \mathrm{~b} / \boldsymbol{\beta}, 8,8 \mathrm{a} \beta$,10a$\beta)$-E thyl 8-[(tert-Butyldiphe-nylsilyl)oxy]-8a-cyano-1,4a-dimethyl-7-methylene-2-oxo-1,4,4a,4b,5,8,8a,9,10,10a-decahydro-1-phenanthrenecarboxylate (16a) and d,I-(1a,4a $\alpha, 4 b \beta, 8 \beta, 8 a \beta, 10 a \beta)$-Ethyl 8-[(tert-Butyldiphenylsilyl)oxy]-8a-cyano-1,4a,7-trimethyl-2-oxo-1,4,4a,4b,5,8,8a,9,10,10a-decahydro-1-phenanthrenecarboxylate (16b). To keto ester 6 ($1.54 \mathrm{~g}, 2.51 \mathrm{mmol}$) in deaerated HOAc (25 mL) were added $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(98 \%$, $1.37 \mathrm{~g}, 5.02 \mathrm{mmol}$) and $\mathrm{Cu}(\mathrm{OAC})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(97 \%, 0.52 \mathrm{~g}, 2.51 \mathrm{mmol})$. The reaction mixture was stirred at rt for 10 h and then passed through a bed of Celite (salts washed with 100 mL of $\mathrm{CH}_{2}-$
Cl_{2}). The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo gavea thick oil. Chromatography on silica gel (270-400 mesh, 20 g) and elution with 10% EtOAc-hexanes gave 887 mg (58\%) of an 81:19 mixture of 16a and 16b. The ratio was determined by integration of the resonance signals at $\delta 5.55$ (br s) and 4.99 (s) and 4.84 (s). It was found that the isomers could be more readily separated at the al cohol stage. Thus, the mixture was submitted directly to a desilylation reaction.
d,I-(1 $\alpha, 4 \mathrm{a} \alpha, 4 \mathrm{~b} \beta, 8 \beta, 8 \mathrm{a} \beta, 10 \mathrm{a} \beta$)-Ethyl 8a-Cyano-8-(hydroxy-methyl)-1,4a-dimethyl-7-methylene-2-oxo-1,4,4a,4b,-5,8,8a,9,10,10a-decahydro-1-phenanthrenecarboxylate (7a) and $\mathrm{d}, \mathrm{I}-(1 \alpha, 4 \mathrm{a} \alpha, 4 \mathrm{~b} \beta, 8 \beta, 8 \mathrm{a} \beta, 10 \mathrm{a} \beta)$-Ethyl 8a-Cyano-8-(hy-droxymethyl)-1,4a,7-trimethyl-2-oxo-1,4,4a,4b,5,8,-8a,9,10,10a-decahydro-1-phenanthrenecarboxylate (7b). n-Bu4NF (1.0 M in THF, $2.9 \mathrm{~mL}, 2.90 \mathrm{mmol}$) was added dropwise via a syringe to an 81:19 mixture of 16a and 16b $(887 \mathrm{mg}, 1.45 \mathrm{mmol}$) in dry THF (10 mL) at rt. The reaction mixture was stirred for 2 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL). The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, and brine dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated in vacuo to give a solid. Chromatography on silica gel (230-400 mesh, 20 g) and elution with 30% EtOAc-hexanes gave 94 mg (17%) of $\mathbf{7 b}$ and $381 \mathrm{mg}(70 \%)$ of 7 aa . For 7a: $\mathrm{mp} 176-177.5^{\circ} \mathrm{C}$; ${ }^{17} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right.$), 2.99 (6 line ddd, $1 \mathrm{H}, \mathrm{H}_{2 \mathrm{ax}}$, $\mathrm{J}=6.5,14.9,14.9 \mathrm{~Hz}$), 2.52 (apparent dt, $\mathrm{H}_{12 \mathrm{eq}}, \mathrm{J}=\sim 3.4$, $\sim 13.1 \mathrm{~Hz}$) and $2.49\left(\mathrm{dt}, \mathrm{H}_{\text {7eq }}, \mathrm{J}=3.4,13.5 \mathrm{~Hz}\right.$) [overlapping, 2 H], $2.43\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{H}_{2 e q}, \mathrm{~J}=2.4,15.0 \mathrm{~Hz}\right), 2.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{ax}}\right)$, 2.16 ($\mathrm{m}, \mathrm{H}_{14 \mathrm{ax}}$) and 2.13 (ddd, $\mathrm{H}_{\text {leq, }} \mathrm{J}=2.4,6.6,13.2 \mathrm{~Hz}$) [overlapping, 2 H], 2.04 (6 line ddd, $\mathrm{H}_{12 a x}$, J $=4.6,13.1,13.1$ Hz) and $2.01\left(\mathrm{dq}, \mathrm{H}_{6 e q}, \mathrm{~J}=\sim 3.4, \sim 14.9 \mathrm{~Hz}\right.$) [overlapping, 2 H], 1.94 (dp, 1H, $\mathrm{H}_{\text {lleq }} \mathrm{J}=\sim 2.5, \sim 13.5 \mathrm{~Hz}$), 1.63 (8 line dddd, $\left.1 \mathrm{H}, \mathrm{H}_{\text {11ax }} \mathrm{J}=4.1,13.0,13.0,13.0 \mathrm{~Hz}\right), 1.57(\mathrm{dd}, \mathrm{OH}, \mathrm{J}=4.2$ 7.2 Hz , slow exchange), 1.46 (6-line ddd, $1 \mathrm{H}, \mathrm{H}_{\text {7ax }} \mathrm{J}=3.6$ $13.6,13.6 \mathrm{~Hz}$), 1.37 (s, 3H, C4-Me), 1.34 (dd, $\mathrm{H}_{5 a x}, \mathrm{~J}=2.4$ 12.5 Hz) and 1.33 (6 -line ddd, $\mathrm{H}_{\text {lax }}$, J $=\sim 4.6, \sim 13.6, \sim 13.6$ Hz) [overlapping, 2 H], $1.27(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$), $1.24(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {gax, }} \mathrm{J}=2.8,12.4 \mathrm{~Hz}\right), 1.21(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 10-\mathrm{Me}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}$, $166 \mathrm{MHz}) \delta 207.6$ (C3), 173.1 (ester CO), 144.0 (C13), 121.4 (CN), $110.0\left(=\mathrm{CH}_{2}\right), 61.4$ (ethyl $\left.\mathrm{CH}_{2}\right), 59.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 57.2(\mathrm{C} 4)$, 56.7 (C5), 56.3 (C9), 54.6 (C14), 43.6 (C8), 39.9 (C1), 38.2 (C10), 36.6 (C7), 36.4 (C2 and C12), 25.5 (C11), 21.6 (C6), 20.8 (C4 Me), 13.9 (ethyl CH_{3}), 12.7 ($\mathrm{C} 10-\mathrm{Me}$); IR (KBr) 3446, 2223, 1746, 1701. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4}$: $\mathrm{C}, 70.75 ; \mathrm{H}, 8.37$; N, 3.75. Found: C, 70.35; H, 8.44; N, 3.62. For 7b: mp 148$149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.65$ (br s, 1H), 3.99$4.22(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.3,13.7 \mathrm{~Hz}), 2.42(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=$ $2.3,14.9 \mathrm{~Hz}$), 3.96 (dd, $1 \mathrm{H}, \mathrm{J}=4.7,12.2 \mathrm{~Hz}$), 2.98 (6 line ddd, $1 \mathrm{H}, \mathrm{J}=6.3,14.7 \mathrm{~Hz}$), 1.85-2.38(m, 7H), 1.78 (br s, 3H), 1.38 (s), $1.28(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.25(\mathrm{~s})$ and $1.17-1.41(\mathrm{~m})[13 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) δ 207.7, 173.2, 130.9, 123.9, 123.1, 61.4, $60.6,57.2,56.8,53.7,51.2,39.8,38.4,38.0,37.6,36.3,23.3$, 21.3, 21.2, 20.9, 13.9, 12.6; IR (KBr) 3500, 2229, 1740 (sh) $1709 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4}: \mathrm{C}, 70.75 ; \mathrm{H}, 8.37 ; \mathrm{N}$ 3.75. Found: C, 70.66; H, 8.50; N, 3.64
d,I-(1 $\alpha, 4 a \alpha, 4 b / \beta, 7 \beta, 8 a \beta, 10 a \beta)-E t h y l$ 8a-Cyano-7,7-(ep-oxymethylene)-8-(hydroxymethyl)-1,4a-dimethyl-2-oxo1,4, 4a,4b,5,6,7,8,8a,9,10,10a-dodecahydro-1-phenanthrenecarboxylate (17). m-CPBA ($80 \%, 295 \mathrm{mg}, 1.36 \mathrm{mmol}$) was added to $7 \mathrm{aa}(254 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The reaction mixture was stirred at rt for 1.5 h , diluted with CH_{2} $\mathrm{Cl}_{2}(80 \mathrm{~mL})$, washed with $0.1 \mathrm{~N} \mathrm{NaOH}(2 \times 30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30$ $\mathrm{mL})$, and brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to afford a solid. The solid was recrystallized from EtOAc-hexanes to give 240 mg (91\%) of 17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 4.16(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.4,3.1 \mathrm{~Hz})$, 3.00 (6 line ddd, J $=6.4,14.7 \mathrm{~Hz}$), $2.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.4 \mathrm{~Hz}$), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 207.3,173.0,121.3,61.4,60.3,58.5,57.0,56.3$, $55.6,51.1,50.6,41.6,39.7,38.0,36.4,36.2,35.0,22.8,21.2$ 20.8, 13.9, 12.5; IR (KBr) 3504, 2226, 1741, $1702 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}$: $\mathrm{C}, 67.84 ; \mathrm{H}, 8.02 ; \mathrm{N}, 3.60$. Found: C 68.06; H, 8.29; N, 3.55.
d,I-(1 $\alpha, 4 a \alpha, 4 b \beta, 7 \beta, 8 a \beta, 10 a \beta)-E t h y l$ 8a-Cyano-7,7-(ep-oxymethylene)-8-formyl-1,4a-dimethyl-2-oxo-1,4,4a,4b,5,6,7,8,8a,9,10,10a-dodecahydro-1-phenanthrenecarboxylate (18). Collins reagent: prepared from dry $\mathrm{CrO}_{3}(308 \mathrm{~g}, 3.08 \mathrm{mmol})$ and pyridine ($487 \mathrm{mg}, 6.17 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) under N_{2} with stirring for 20 min . The reagent was cooled to $0^{\circ} \mathrm{C}$, al cohol $\mathbf{1 7}(200 \mathrm{mg}, 0.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise over 10 min , and stirring was continued for 45 min . The reaction mixture was passed through a short bed of Celite-silica gel, and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed in vacuo to afford crude aldehyde 18: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 3 Hz), $4.17(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m})$ and 3.01 (6 line ddd, $\mathrm{J}=6.4$, $14.7,14.7 \mathrm{~Hz}$ [2 H], $2.82(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=2.6 \mathrm{~Hz})$, $1.37(\mathrm{~s}), 1.29(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.28(\mathrm{~s}, 3 \mathrm{H})$. The aldehyde was not characterized further but was submitted directly to cyclization
d,I-4 β-Carbethoxy-8 β-cyano-4 $\alpha, 10 \beta$-dimethyl-3-oxo-13-nor-16-oxoandrosta-13,14-diene (8). The crude aldehyde 18 in 5% p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ in DMSO (5 mL) was heated at $50^{\circ} \mathrm{C}$ for 20 h with stirring. The solvent was removed in vacuo (50 ${ }^{\circ} \mathrm{C}$ at 0.4 mm); the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic solution was washed with saturated $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a solid. Chromatography on silica gel ($3 \mathrm{~g}, 270-400$ mesh) eluting with 30% ethyl acetate-hexanes gave $114 \mathrm{mg}(60 \%$, two steps from 17) of 8: $\mathrm{mp} 182.6-183.8{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 3.05(6$ line ddd, J = 6.5, 14.8, 14.8 Hz) and $2.90(\mathrm{br} \mathrm{dd}, \mathrm{J}=5.4,14.3$ $\mathrm{Hz})[2 \mathrm{H}], 2.69(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.2,13.2 \mathrm{~Hz}), 2.33-2.59(\mathrm{~m}, 3 \mathrm{H})$, 2.23 (ddd, 1H, J = 2.4, 6.5, 13.3 Hz), 1.75-2.13 (m,3H), 1.63 (6 line ddd, $1 \mathrm{H}, \mathrm{J}=3.4,13.5,13.5 \mathrm{~Hz}$), 1.39 ($\mathrm{s}, 3 \mathrm{H}$), $1.30(\mathrm{~s}$, 3 H and $\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$) and $1.18-1.47(\mathrm{~m})[3 \mathrm{H}]$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 207.4,173.1,138.3,137.8,125.8,122.9,118.8$, 61.4, 57.3, 56.7, 54.2, 39.7, 37.8, 37.5, 36.2, 36.1, 21.5, 21.3, 20.8, 20.3, 13.9, 12.2; IR (KBr) 2225, 1721, 1707 (sh) cm^{-1}. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4}$: $\mathrm{C}, 71.52 ; \mathrm{H}, 7.37$; $\mathrm{N}, 3.79$. Found: C, 71.21; H, 7.67; N, 3.43.
d,I-4 β-Carbethoxy-8 β-formyl-3 β-hydroxy-4 $\alpha, 10 \beta$-di-methyl-13-nor-16-oxoandrosta-13,14-diene (19). DIBALH (1.0 M in toluene, $0.94 \mathrm{~mL}, 0.94 \mathrm{mmol}$) was added via a syringe to cyano ketone $8(58.0 \mathrm{mg}, 0.157 \mathrm{mmol})$ in dry tol uene (6 mL) at $-78{ }^{\circ} \mathrm{C}$ over a 25 min period under N_{2}. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 25 min and then quenched with 6% HOAc saturated with NaOAc at $-78{ }^{\circ} \mathrm{C}$. The heterogeneous mixture was allowed to come to rt, stirred for 15 min , and then extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined organic solution was washed with water (10 mL), saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a solid. Chromatography on silica gel ($5 \mathrm{~g}, 230-400$ mesh) eluting with ethyl acetatehexanes gave $43 \mathrm{mg}(73 \%)$ of 19: mp 131.8-132.5 ${ }^{\circ} \mathrm{C}$ (EtOAchexanes 1:2); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz}), 7.18$ $(\mathrm{s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}), 4.11(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.45$ (d, $1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}$), 3.08 (6 -line ddd, $1 \mathrm{H}, \mathrm{J}=4.3,11.8,11.8$ $\mathrm{Hz}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.3,13.0 \mathrm{~Hz}), 2.52(\mathrm{~m}$, $1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.10(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $4.2,11.4 \mathrm{~Hz}), 0.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.36,177.60$, 139.56, 138.09, 123.60, 120.40, 78.00, 60.49, 56.01, 55.60, 48.88, 48.21, 38.08, 37.79, 33.61, 28.15, 23.49, 20.72, 20.57, 17.73, 13.95, 13.25. HRMS cal cd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 374.2093$, found 374.2093. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5}: \mathrm{C}, 70.43, \mathrm{H}, 8.05$. Found: C, 70.56; H, 8.07.
d,I-3 β-Hydroxy-4,8-bis(hydroxymethyl)-4 $\alpha, 10 \beta$-dimethyl-13-nor-16-oxoandrosta-13,14-diene (20). Aldehyde 19 (34.1 $\mathrm{mg}, 0.0912 \mathrm{mmol}$) in dry THF (1.5 mL) was added dropwise to a suspension of LAH ($10.4 \mathrm{mg}, 0.274 \mathrm{mmol}$) in dry THF (1.5 mL). The reaction mixture was refluxed for 2 h , cooled to $0{ }^{\circ} \mathrm{C}$, carefully quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$, and then extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined organic solution was washed with brine (10 mL), dried ($\mathrm{Na}_{2}-$ SO_{4}), and concentrated in vacuo to afford a solid. Chromatography on silica gel ($5 \mathrm{~g}, 230-400$ mesh) eluting with 50% and then 70% ethyl acetate-hexanes followed by ethyl acetate gave 29.2 mg (96\%) of 20: mp $185.0-186.1{ }^{\circ} \mathrm{C}(\mathrm{MeOH}-$
hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 11.4 Hz), 3.80 (overlapping d, J = 11.1 Hz) and 3.74 (overlapping d, J $=10.9 \mathrm{~Hz}$) $[2 \mathrm{H}], 3.44(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}$, $3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 77.00) $\delta 138.13,137.20,129.76,119.74,80.46,64.17,61.98$, 56.28, 56.05, 42.83, 40.22, 38.07, 36.91, 34.69, 27.67, 22.42, 20.14, 18.05, 17.60, 17.24; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$ 334.2150, found 334.2144.
d,I-4 $, 8,8$-Bis[[(tert-butyldimethylsilyl)oxy]methyl]-3 β -hydroxy-4 $\alpha, 10 \beta$-dimethyl-13-nor-16-oxoandrostane-13,14diene (21). TBDMSCI ($46.0 \mathrm{mg}, 0.305 \mathrm{mmol}$) was added in one portion to triol $21(23.2 \mathrm{mg}, 0.0695 \mathrm{mmol})$ and 4-DMAP ($18.7 \mathrm{mg}, 0.153 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ under N_{2}. The reaction mixture was stirred at rt for 48 h . Water (3 mL) was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Chromatography of the residue on silica gel ($5 \mathrm{~g}, 230-400$ mesh) eluting with ethyl acetate-hexanes gave 28 mg (72%) of 21: $\mathrm{mp} 116.5-117.2^{\circ} \mathrm{C}$ (from column); ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J})=6.8 \mathrm{~Hz}\right), 4.20$ (d, 1H, J $=10.1 \mathrm{~Hz}$), $3.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}$), 3.47 (apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}), 3.21-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.82(\mathrm{~m}, 1 \mathrm{H})$, 2.36-2.57 (m, 2H), $1.20(\mathrm{~s}), 0.91(\mathrm{~s}), 0.84(\mathrm{~s}), 0.87(\mathrm{~s}), 0.095$ (s), -0.15 (s), $\left.-0.18(\mathrm{~s}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCI}{ }_{3}, 77.00\right) ~ \delta 137.92$, 136.30, 130.83, 119.89, 80.18, 65.22, 64.30, 56.74, 56.34, 42.60, $39.63,38.47,37.06,35.51,28.11,25.92,25.79,25.70,20.48$, 18.51, 18.06, 17.97, 17.80, 17.55, -3.60, -5.72, -5.77, -5.94; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right) 562.3875$, found 562.3874.
d,I-4 $\beta, 8 \beta$-Bis[[(tert-butyldimethylsilyl)oxy]methyl]4 $\alpha, 10 \beta$-dimethyl-3-oxo-13-nor-16-oxoandrosta-13,14-diene (22). J ones reagent was prepared from pyridine (63 mg , $0.80 \mathrm{mmol})$ and dry $\mathrm{CrO}_{3}(40.0 \mathrm{mg}, 40.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL). Alcohol $21(28 \mathrm{mg}, 0.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to the J ones reagent at rt . The reaction mixture was stirred for 2.5 h and then filtered through a pad of Celite and silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration of the organic sol ution in vacuo and subsequent chromatography on silica gel ($5 \mathrm{~g}, 230-400$ mesh) eluting with ethyl acetatehexanes gave $18.6 \mathrm{mg}(67 \%)$ of 22: $\mathrm{mp} 119.1-120.8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.10(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}), 3.82(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 3.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 3.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5$ $\mathrm{Hz}), 2.73-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.71(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.56(\mathrm{~m}, 1 \mathrm{H})$, 2.13 (ddd, $1 \mathrm{H}, \mathrm{J}=3.1,7.0,13.1 \mathrm{~Hz}$), 1.11 (s, $6 \mathrm{H}, 2-\mathrm{Me}$), 0.89 (s) and $0.86(\mathrm{~s})[18 \mathrm{H}], 0.046(\mathrm{~s}, 6 \mathrm{H}),-0.11(\mathrm{~s})$ and -0.13 (s) [6H]; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.00$) $\delta 214.44,138.07,136.39,130.57$, 119.79, 65.68, 64.12, 57.06, 55.96, 53.91, 39.75, 39.65, 36.95, $35.24,35.05,25.90,25.85,21.57,20.60,19.91,18.24,16.82$, $-5.58,-5.66,-5.66,-5.91$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$ 560.3722, found 560.3717 .
d,I-4 β-Carbethoxy-8 β-cyano-3 β-hydroxy-4 $\alpha, 10 \beta$-di-methyl-13-nor-16-oxo-androsta-13, 14-diene (23). NaBH_{4} ($100 \mathrm{mg}, 2.63 \mathrm{mmol}$) was added in several portions to keto ester $8(90 \mathrm{mg}, 0.24 \mathrm{mmol})$ in a 1:2 mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOH $(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h and then quenched with acetone. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a solid. The solid was triturated with hexanes and then recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes to give 80 mg (88\%) of 23: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}), 7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz})$, $4.18(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}$), 3.08 (6 -line ddd, $1 \mathrm{H}, \mathrm{J}=4.3,12.0,12.0 \mathrm{~Hz}$), $2.87(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.5,16.3$ Hz), $2.65(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.2,13.3 \mathrm{~Hz}), 1.71-2.57(\mathrm{~m}, 9 \mathrm{H}), 1.61$ (6 line ddd, $1 \mathrm{H}, \mathrm{J}=3.6,13.3,13.3 \mathrm{~Hz}$), $1.44(\mathrm{~s}, 3 \mathrm{H}$), 1.34 (t, $3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.4,11.5 \mathrm{~Hz}), \sim 1.08(\mathrm{~m})$ and 1.04 (s) $[4 \mathrm{H}] ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,77.00$) $\delta 177.47,138.20$, 137.81, 126.06, 123.18, 119.05, 78.01, 60.76, 55.43, 54.70, 48.71, 38.40, 37.84, 37.81, 36.18, 27.85, 23.54, 21.38, 21.03, 20.38, 14.02, 12.58; IR (KBr) 3450, 2226, $1735 \mathrm{~cm}^{-1}$. HRMS cal cd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 371.2096$, found 371.2094.
d,I-4 β-Carbethoxy-8 β-cyano-4 $\alpha, 10 \beta$-dimethyl-13-nor-16-oxoandrosta-2, 13, 14 -triene (24). Trifluoromethanesulfonyl chloride ($51 \mu \mathrm{~L}, 79.5 \mathrm{mg}, 0.47 \mathrm{mmol}$) was added via a syringe to alcohol 23 ($70 \mathrm{mg}, 0.19 \mathrm{mmol}$) and 4-DMAP (138
$\mathrm{mg}, 1.13 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h and then diluted with CH_{2-} Cl_{2}. The organic solution was washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo afforded a mixture of the corresponding sulfonate ester, a trace amount of 24, and 4-DMAP. 4-DMAP (50 mg) was then added to the three-component mixture in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was refluxed overnight and then diluted with CH_{2-}^{-} Cl_{2}. The organic solution was washed with $10 \% \mathrm{HCl}$, saturated NaHCO_{3}, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a solid. Chromatography on a silica gel seppack and elution with 5\% EtOAc-hexanes gave 63 mg (94\%) of 24: mp 126.5-128 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $1.3 \mathrm{~Hz}), 7.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}), 5.65(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}$ $=7.1 \mathrm{~Hz}$), $2.88(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.1,16.1 \mathrm{~Hz}), 2.64(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}$ $=3.2,13.2 \mathrm{~Hz}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.09(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) $\delta 175.0,138.1,137.9,131.5,126.0$, 123.0, 122.9, 119.0, 60.7, 53.9, 52.4, 45.0, 40.4, 37.2, 36.3, 36.1, 27.7, 21.4, 21.2, 20.4, 14.1, 13.5; IR (KBr) 2225, $1734 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}: \mathrm{C}, 74.76 ; \mathrm{H}, 7.70 ; \mathrm{N}, 3.96$. Found: C, 74.53; H, 7.84; N, 3.79.
d,I-F ormyl-4 β-(hydroxymethyl)-4 $\alpha, 10 \beta$-dimethyl-13-nor-16-oxoandrosta-2,13,14-triene (25). DIBALH (1.0 M in toluene, $0.47 \mathrm{~mL}, 0.47 \mathrm{mmol}$) was added via a syringe over 5 min to cyano ester $\mathbf{2 4}(50 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry toluene (1.5 mL) at $-78^{\circ} \mathrm{C}$ under N_{2}, and stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$. The reaction mixture was quenched with $6 \% \mathrm{HOAC}$ saturated with NaOAc , allowed to warm to rt, and then stirred for an additional 15 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a solid. Chromatography on a silica gel sep-pak and elution with 10% EtOAc-hexanes gave 33 mg (74%) of 25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHO}$, $\mathrm{J}=1.5 \mathrm{~Hz}), 7.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{16}\right), 7.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{15}, \mathrm{~J}=1.0 \mathrm{~Hz}\right)$, $5.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{3}\right), 3.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHHOH}, \mathrm{J}=11.0 \mathrm{~Hz})$, $3.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHHOH}, \mathrm{J}=10.7 \mathrm{~Hz}), 2.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{12 e q} \mathrm{~J}=\right.$ $5.0,16.0 \mathrm{~Hz}$), 2.73 (6 -line ddd, $1 \mathrm{H}, \mathrm{H}_{\text {7eq }}, \mathrm{J}=3.1,3.1,12.8 \mathrm{~Hz}$), $2.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{12 a x}\right), 2.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\text {leq }}, \mathrm{J}=4.3,16.8 \mathrm{~Hz}\right), 2.07$ (8-line dddd, $1 \mathrm{H}, \mathrm{H}_{\text {lax }} \mathrm{J}=5.4,12.5,12.5,12.5 \mathrm{~Hz}$), 1.92 (m, $\left.1 \mathrm{H}, \mathrm{H}_{11 \mathrm{eq}}\right), \mathrm{I} .76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {lax }}, \mathrm{H}_{6 \mathrm{eq}}\right), \mathrm{I} .59\left(\mathrm{dd}, \mathrm{H}_{\text {9ax }} \mathrm{J}=1.8,12.5\right.$ Hz) and 1.53 (partially resolved 8 -line dddd, $\mathrm{H}_{6 \mathrm{ax},} \mathrm{J}=3.1,13.1$, $13.1,13.1 \mathrm{~Hz}$) 2 H], 1.44 (dd, $1 \mathrm{H}, \mathrm{H}_{5 \mathrm{ax}} \mathrm{J}=2.7,13.1 \mathrm{~Hz}$), 1.36 (m, 1H, $\mathrm{H}_{7 a x}$), $1.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-4 \mathrm{Me}), 0.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-10 \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 199.5$ (CHO), 139.7 (C16), 138.1 (C15), 132.9 (C3), 123.7 (C14), 123.5 (C2), 120.5 (C13), 66.8 $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.4$ (C9), 52.2 (C5), 48.6 (C8), 39.9 (C1), 39.5 (C4), 36.4 (C10), 33.4 (C7), 25.7 (C-4 Me), 20.7 (C12), 19.7 (C6), 17.9 (C11), 16.0 (C10).

Acknowledgment. We are indebted to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research, and H.F. thanks the Burroughs Wellcome Foundation for a research fellowship. The Duke University NMR Spectroscopy Center was established with grants from the NIH, the NSF, and the North Carolina Biotechnology Center, which are gratefully acknowledged.

Supporting Information Available: ${ }^{15}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 15, 20, 21, 22, 23, 24, and 25 and 2D COSY, HMQC, HMBC, and 1D APT spectra for 7a (6 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O971632F

[^0]: (5) F or several approaches to spongians using chiral relay starting materials, see: Abad, A.; Agullo, C.; Arno, M.; Marin, M. L.; Zaragoza, R. J. J. Chem. Soc., Perkin Trans. 1 1996, 2193 and references within.
 (6) Zoretic, P. A.; Zhang, Y. Tetrahedron Lett. 1996, 37, 1751.
 (7) Zoretic, P. A.; Chen, Z.; Zhang, Y. Tetrahedron Lett. 1996, 37, 7909.
 (8) Takahashi, T.; K atouda, W.; Sakamoto, Y.; Tomida, S.; Yamada, H. Tetrahedron Lett. 1995, 36, 2273.

[^1]: (9) Huckin, S. N.; Weiler, L. J . J . Am. Chem. Soc. 1974, 96, 1082
 (10) Dombroski, M. A.; Kates, S. A.; Snider, B. B. J . Am. Chem. Soc. 1990, 112, 2759 and references within.
 (11) F or recent radical reviews, see: (a) Snider, B. B. Chem. Rev. 1996, 96, 339. (b) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. Rev. 1996, 96, 177. (c) Malacria, M. Chem. Rev. (Washington, D.C.) 1996, 96, 289. (d) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519. (e) Melikyan, G. G. Synthesis 1993, 833.

[^2]: a Key: (a) $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{HOAc}, \mathrm{Ar}$; (b) n-Bu4NF, THF; (c) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{CrO}_{3} \cdot 2 p y, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{DMSO}, 50^{\circ} \mathrm{C}$.

[^3]: (12) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.

[^4]: (13) Chaudhary, S. K.; Hernandez, O. Tetrahedron Lett. 1979, 99.

